
How I Learned to Stop Worrying and Love Plugins

Chris Grier Samuel T. King
University of Illinois

Dan S. Wallach
Rice University

Abstract
This position paper argues that browsers should be re-
sponsible for specifying and enforcing security policies
for browser plugins. By enabling the browser to make
security decisions on behalf of the plugin, browsers can
significantly reduce the impact of plugin vulnerabilities
and eliminate much of the risk posed by today’s plugin
exploits. We propose policies for document access, per-
sistent state, network connections and other devices that
browser-based security policy can implement.

1 Introduction
Web browser plugins have become a ubiquitous tool on
the Internet for videos, music, and documents. The in-
troduction of new, feature-rich plugins has revolution-
ized web applications; for example, Flash Player is be-
hind what makes YouTube work – without the streaming
video support added in Adobe Flash 7, YouTube would
not have taken off [7].

Unfortunately, plugins are riddled with security vul-
nerabilities and expose users to significant risk. Plu-
gins are the single largest source of vulnerabilities in
browsers today, accounting for 476 reported vulnerabili-
ties in 2007 compared to 163 for browsers, including IE,
Firefox, and Safari combined [13]. Each plugin is re-
sponsible for implementing its own security policy and
enforcement mechanisms that fail when an attacker can
exploit a plugin. To interact with the browser, plugins use
a plugin API, such as the NPAPI [9], supported by the
browser. Plugin APIs differ across browsers but in gen-
eral, the browser provides plugins with document (i.e.,
DOM) access, network connectivity and interaction with
other browser components. Except for some document
accesses, each plugin is responsible for restricting the use
of this API by the plugin content as well as controlling
access to the underlying system.

Allowing plugins to enforce and define security poli-
cies has completely failed to prevent plugin attacks from
damaging systems. Many plugin vulnerabilities enable
code execution attacks, resulting in modification of the
underlying system and damage to the browser. One
recent example is a malicious PDF advertisement that
exploited the PDF browser plugin to perform drive-by-

downloads and install malware automatically [10].
Although mechanisms for plugin security are well un-

derstood, current policies are either too restrictive and
break commonly used sites, or are too permissive and
provide limited security benefits. To provide isola-
tion from exploited plugins, browsers such as OP [3],
Chrome [1], and Gazelle [4] place plugins in a sepa-
rate process, isolating the plugin from the rest of the
browser while exposing an interface for plugins to com-
municate. OP and Gazelle both implement an interface
that imposes security policies on plugin instances. OP
does so by implementing policies specifically designed
for plugin use while Gazelle uses a standard browser pol-
icy across all resources. Both policies are too restrictive
and impose unacceptable limitations on plugins, such as
restricting network access to the domain of the content
provider, breaking popular sites such as YouTube. By
default Chrome only isolates plugins. Further sandbox-
ing can be applied by Chrome but even this can cause
compatibility issues [1].

Our position is that using browsers to impose control
on plugins offers the best combination of security and
flexibility. Using a browser architecture that places plu-
gins into separate processes provides a barrier that the
browser can leverage to control and interact with the plu-
gin. The browser should be responsible for controlling
access to page resources (document tree), persistent state
(cookies and other local storage), network connections,
and to other devices. The browser is already responsi-
ble for instantiating the plugin in modern browsers and
understands page semantics, allowing it to make mean-
ingful security decisions.

We propose several policies that strike a balance be-
tween security and flexibility and our goal is to foster an
open discussion about plugin policies. In Section 4 we
provide a summary of each plugin policy for document,
network, persistent state and device access.

2 Benefits
By using the browser rather than the operating system to
control plugins, the browser can use additional seman-
tic information from web pages for plugin-related secu-
rity decisions as well as provides a single location for
all security decisions. Figure 1(a) shows current plugin

1



architectures while Figure 1(b) presents our proposed ar-
chitecture and restricted interfaces. Our goal is to pro-
vide browser resilience against an exploited plugin. Al-
though this seems ambitious, most of the mechanisms to
properly restrict plugins have been developed by previ-
ous research, though none define appropriate policies for
plugins. Our design aims to provide fault tolerance and
protect both the browser and system from plugin vulner-
abilities.

Isolating and containing each plugin in a separate pro-
cess allows the browser to tolerate plugin bugs that would
normally crash the entire browser and contain attacks
inside the plugin process. Data from IE crashes indi-
cate that over 70% of browser crashes were due to plug-
ins [15], demonstrating the need for increased reliability.

In addition to fault isolation, external security mech-
anisms are necessary to limit the ability of the plugin to
interact with the operating system directly. Sandboxing
systems such as systrace, NativeClient and XaX enable
application level safety properties that we can use to re-
strict plugins on different platforms [8, 14, 5]. Without
sandboxing, a plugin vulnerability exposes not only the
browser to attack but places the whole system at risk. By
restricting the plugin from accessing the local system and
forcing it to use browser provided APIs we can prevent
damage to the underlying system.

To prevent the browser from being attacked or used to
launch an attack, policies must also limit a plugin’s abil-
ity to corrupt and directly interact with the browser. Con-
trolling browser access also prevents internal browser
state from being exposed to plugin attacks.

3 Plugin capabilities
The challenge of securing plugins is to maintain a large
range of functionality and enable feature-rich applica-
tions while at the same time providing safety and re-
silience to plugin exploits. The diverse functionality
of plugins makes them useful a wide range of web ap-
plications, but also poses a major security threat if left
unchecked. In this section we discuss the different types
of plugin permissions on document access, persistent
state, network connections and other device access.

Document access. The browser plugin API was orig-
inally designed to allow embedding new types of con-
tent and provided direct screen access for plugins to
draw in. As plugin and browser support evolved, plugins
were given additional access to internal browser struc-
tures without any limitations. As the document tree inter-
faces were standardized, plugins retained access to core
document and window objects.

Today’s plugins can access the window contents, in-
cluding the document tree, JavaScript global environ-
ment, and cookies. The plugin API includes “scriptable”

extensions that allow two-way interaction between page
and plugin content using JavaScript. Plugin content can
expose functions for JavaScript in the page to call, and
the plugin can execute JavaScript in the context of the
page. In the current model, the browser is completely
unaware of the content of the interaction, and through
JavaScript, plugins are given full access to page-level re-
sources.

Persistent state. Plugins maintain their own files on
the local file system for storing persistent state across
browsing sessions without any interaction with the
browser. Plugin storage is separate from browser cook-
ies, where accesses are performed according to same-
origin policy. Rather than allowing plugin content to ac-
cess the file system directly, current plugin implemen-
tations in Flash and Silverlight each provide their own
notion of secure storage on top of the local file system
layer, and allow plugin content to access the per-plugin
storage.

Plugins like Flash and Silverlight provide a domain-
based storage mechanism with different access policies
than browser cookies, presenting a interesting discrep-
ancy between the two storage mechanisms. “Flash cook-
ies” are the Flash Player terminology for domain-based
storage, and are similar to browser cookies except they
allow different types of data and are stored using the
file system, not browser cookies. These flash cookies
have been the subject of recent privacy concerns because
Flash requires a specialized mechanism to view and re-
move stored data [2].

Network access. Plugins make network requests by
accessing host networking APIs directly and through the
browser provided plugin API. NativeClient recognizes
local socket access as a security risk and cuts off plug-
ins from local network access. Other plugins, such as the
Java Runtime, Flash and Silverlight each have their own
policy for restricting network access that differs from the
browser’s same-origin limitations on JavaScript.

Differences in networking policies between the
browser and plugins expose interesting attack vectors
and creative work arounds. A current “solution” to same-
origin network limitations in JavaScript is to use a Flash
as a proxy for XMLHttpRequests, an XML-based asyn-
chronous network request, since Flash has no such same-
origin restrictions. Using Flash to issue network requests
on behalf of JavaScript subverts the same-origin policy
limitations intended by browsers. DNS rebinding at-
tacks [6] also become a problem since each plugin has
a different policy for resolving and pinning DNS entries
internally.

Device access. As with any general purpose applica-
tion, plugins can access hardware attached to a system.
These devices include the screen, microphones, speak-

2



(a) The current architecture for including
plugins. Both the browser and plugins are
able to make system calls and interact with
the OS directly (orange lines).

(b) Suggested plugin architecture. The plu-
gin is given sandboxed access to the OS and
interacts with system resources through the
browser.

Figure 1: Plugin architectures. Black lines are plugin specific, restricted APIs. Orange lines are unrestricted access.

ers, and video cameras just to name a few. These re-
sources can be used by attackers, as demonstrated by
a recent proof of concept exploit that tricks users into
enabling the microphone using the Adobe Flash Player,
turning a malicious flash applet into a mechanisms for
spying on users without exploiting the plugin [11].

Plugins also are given access to the screen in order
to render content. The screen is a new area to con-
sider when dealing with plugin security. Plugins such as
Flash and Silverlight include the ability to resize and full-
screen without interacting with the page embedding the
plugin content. Plugins can render any content, possibly
even mimicking browser and window manager chrome.

4 Proposed plugin policies
In this section we outline potential policies for document,
network and persistent state access that can be applied to
plugins. We assume that the plugin is running in a sepa-
rate process from the browser and all interaction with the
underlying system is performed through the browser. Us-
ing this architecture, policy can then be enforced on the
calls into the browser to provide secure execution of plu-
gin content. Although each policy restricts plugin func-
tionality, we hope to achieve a balance of functionality
and security with each policy.

4.1 Document access
By limiting access to the document, plugins can be pre-
vented from stealing valuable browser state as well as
hijacking control of the page. Each document access pol-
icy restricts the information available to plugins in order
to prevent information theft by malicious plugin content,
while still maintaining most of the functionality the plu-
gin expects and relies on.

Clean document. Rather than direct document access,
the clean document policy provides the plugin content
with a different view of the document that has been san-
itized by the browser. Sanitization involves removing
any non-standardized content and text from the docu-

ment tree retaining the original document structure and
element types but without any page-specific data.

Copy-on-write document. With a copy-on-write doc-
ument, the plugin is provided with access to the original
document (or a clean document). Any modifications to
the document by the plugin cause a copy of the docu-
ment to be made and changes to the page written to the
copy. The modified document can then be committed
or reverted, similar to the cookie policy from Doppel-
ganger [12].

Proxy objects. Instead of interacting with the page di-
rectly, the plugin is given access to a set of objects that
act on behalf of the plugin. Proxy objects are constrained
by capabilities set for them by the page, and any accesses
are subject to the proxy object policy.

Rooted subtree. In the rooted subtree policy, a plugin
is given access to a limited portion of the document tree.
From a subtree (or clean subtree) of the document, the
plugin can only access nodes inside the subtree. The plu-
gin has full access to the subtree and can add, update, and
delete nodes.

4.2 Network access
Network policies restrict network requests based on IP,
domain or other identifiers determined by the browser.
For most plugins, JavaScript’s same-origin policy will
cause unacceptable restrictions. If we try and force same-
origin policy onto plugin network connections we are re-
moving significant functionality that makes plugins use-
ful.

Server-specified allow. The server-specified allow is
a variation on Flash crossdomain.xml policy where the
plugin developer includes network-level access control
specification on the destination server. Developers can
specify restrictions in the page itself as attributes on the
plugin element, or by a server-side file hosted in a fixed
location. In addition, the destination of the outgoing net-
work request can further deny access to resources.

3



All or one. The plugin content makes an implicit
choice of document access or network access in the all
or one policy depending on how the plugin behaves. If
the plugin content accesses the document, the browser
restricts network access to prevent cross-domain com-
munication, including the ability to create cross-domain
images or scripts in the document. If the plugin content
accesses cross-domain network resources, the browser
denies access to the document tree and all other browser
states.

Same-company policy. Similar to same-origin policy,
the browser restricts access based on the company that
owns a set of domains and origins, redefining the trust
boundary from the origin to the company. This alleviates
the burdens of same-origin restrictions and enables con-
tent delivery networks and cooperation between services
owned and trusted by a single company. To determine
the corporate boundary, the browser can use DNS regis-
tration information.

4.3 Persistent state access
Persistent state policies restrict file system access to pre-
vent an exploited plugin from accessing arbitrary files.
By allowing plugins to access a select set of files on
the system and carefully controlling file system access,
browsers can enable safe access.

Automatic local and global files. To differentiate be-
tween global plugin state and site-specific plugin state
we identify both types of data automatically. In our tech-
nique we install and initialize the plugin and any files cre-
ated during installation are considered to be global states
– all plugin instances are given read/write access to these
global state files. After the plugin has been installed, we
consider all subsequent files created by plugin instances
site-specific states, which are protected according to our
browser-level security policy.

For site-specific states, we redirect all file system calls
to the browser, which maintains a private storage mech-
anism that is controlled by the browser security policy.
Our persistent state policy separates site-specific states
based on the domain of the content to avoid cross-domain
interference.

Jailed accesses. This browser provides a virtual folder
(e.g., Unix chroot) where all file system accesses from
a plugin are performed. The virtual folder provides con-
tainment from the rest of the file system as well persistent
storage across browsing sessions. The browser provides
each plugin instance with a different virtual folder de-
pending on the plugin content domain.

4.4 Device access
Device policies restrict access to devices based on the de-
vice functionality. For example, a policy could prohibit a

plugin from listening on the microphone or allow access
to a video camera. Each policy limits the interaction with
the underlying hardware to provide safety during a plu-
gin attack while allowing access to the core functionality
that a plugin requires.

Page permitted, user granted. Using the page permit-
ted, user granted policy the page including the plugin
specifically allows access to a device in addition to the
user granting access to the device requested.

Capability enforced. In this policy the plugin requests
a set of capabilities for each device. For example, a plu-
gin can request only camera access, the browser then
prohibits other access to the plugin. Unsafe capability
requests, such as camera and network access, would re-
quire authorization by the user.

5 Conclusions
Using a browser architecture to support and secure plu-
gins can be an effective means to mitigate the threats
posed by plugin vulnerabilities. We proposed browser-
enforced policies for plugins that may potentially im-
prove security without affecting plugin functionality for
today’s Web. We are currently in the process of deter-
mining the effects of our policy on common plugin use
and will present our findings at the conference.

References
[1] A. Barth, C. Jackson, C. Reis, and The Google Chrome Team.

The security architecture of the chromium browser, 2008.
http://crypto.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

[2] Electronic Privacy Information Center. EPIC Flash Cookie Page,
2005. http://epic.org/privacy/cookies/flash.
html.

[3] C. Grier, S. Tang, and S. T. King. Secure web browsing with the
op web browser. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, 2008.

[4] C. Grier, H. J. Wang, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter. The multi-principal os construction of the gazelle web
browser. In To appear in the Proceedings of the 18th USENIX
Security Symposium, August 2009.

[5] J. Howell, J. R. Douceur, J. Elson, and J. R. Lorch. Leveraging
legacy code to deploy desktop applications on the web. In Pro-
ceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), December 2008.

[6] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protect-
ing browsers from DNS rebinding attacks. In Proceedings of the
14th ACM conference on computer and communications security
(CCS), 2007.

[7] J. Karim. YouTube: from concept to hypergrowth, October 2006.
Video clip.

[8] A. Kurchuk and A. D. Keromytis. Recursive sandboxes: Extend-
ing systrace to empower applications. In Proceedings of the 19th
IFIP International Information Security Conference (SEC), Au-
gust 2004.

[9] Mozilla. Netscape Plugin API. http://www.mozilla.
org/projects/plugins/.

4



[10] B. Prince. Attackers Infect Ads with Old Adobe Vulnerability
Exploit, February 2009. http://www.insidetech.com/
news/articles/4146-eweek-ads-infect-users-
thanks-to-adobe-flaw.

[11] RSnake. Clickjacking details, October 2008. http:
//ha.ckers.org/blog/20081007/clickjacking-
details/.

[12] U. Shankar and C. Karlof. Doppelganger: Better browser privacy
without the bother. In Proceedings of the 13th ACM conference
on computer and communications security (CCS), 2006.

[13] Symantec. Symantec Global Internet Security Threat
Report Trends for July-December 07, April 2008.
http://www.symantec.com/business/theme.
jsp?themeid=threatreport.

[14] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A Sand-
box for Portable, Untrusted x86 Native Code. In Proceedings of
the 2007 IEEE Symposium on Security and Privacy, May 2009.

[15] A. Zeigler. IEBlog: IE8 and Loosely-Coupled IE (LCIE), March
2008. http://blogs.msdn.com/ie/archive/2008/
03/11/ie8-and-loosely-coupled-ie-lcie.aspx.

5


