
RINSE: the Real-time Immersive Network Simulation Environment for Network
Security Exercises

Michael Liljenstam1, Jason Liu2, David Nicol1, Yougu Yuan1, Guanhua Yan1, Chris Grier1

1University of Illinois at Urbana-Champaign
Coordinated Science Laborabory

1308 W. Main St., Urbana, IL 61801
{mili,nicol,yuanyg,ghyan,grier }@crhc.uiuc.edu

2Colorado School of Mines
Mathematical and Computer Sciences

Golden, CO 80401-1887
xliu@mines.edu

Abstract

The RINSE simulator is being developed to support
large-scale network security preparedness and training ex-
ercises, involving hundreds of players and a modeled net-
work composed of hundreds of LANs. The simulator must
be able to present a realistic rendering of network behav-
ior as attacks are launched and players diagnose events and
try counter measures to keep network services operating.
We describe the architecture and function of RINSE and
outline how techniques like multiresolution traffic model-
ing and new routing simulation methods are used to address
the scalability challenges of this application. We also de-
scribe in more detail new work on CPU/memory models
necessary for the exercise scenarios and a latency absorp-
tion technique that will help when extending the range of
client tools usable by the players.

1. Introduction

The climate on the Internet is growing increasingly hos-
tile while organizations are increasingly relying on the In-
ternet for at least some aspects of day-to-day operations.
They are thus being forced to plan and prepare for network
failures or outright attacks—how it might affect them and
what actions to take. With current system complexity, tools
to assist in preparedness evaluation and training are likely
to become more and more important.

The October 2003 Livewire cyber war exercise [1] con-
ducted by the Department of Homeland Security, is one
particular instance of preparedness evaluation and training
that involved companies across industrial sectors as well as
government agencies. More exercises of this type are cur-
rently being planned, and based on experiences from the
first event, there was a desire for improved tools to auto-
matically determine the impact on the network from attacks
and defensive actions and the extent to which the network

is capable of delivering the services needed. Providing net-
work simulation tool support for exercises such as Livewire
is particularly challenging because of their scale. Future ex-
ercises are expected to involve as many as a couple of hun-
dred participating organizations, and will thus involve many
“players” and a network of significant size.

We are currently developing the Real-time Immer-
sive Network Simulation Environment for network
security exercises (RINSE) to meet this need and ad-
dress the challenges inherent in this type of applica-
tion. Hence, the goal for RINSE is to manage large-scale
real-time human/machine-in-the-loop network simula-
tion with a focus on security for exercises and train-
ing. It needs to be extensible so that it can evolve over
time, and it needs to be designed with an eye towards secu-
rity and resilience to hardware faults since these exercises
involve many people and last for several days.

The spectrum of approaches to general large-scale net-
work modeling being explored in the literature range from
hardware emulation testbeds like Emulab [30], network em-
ulators like ModelNet [29], to network simulators like IP-
TNE [27], GTNetS [6], PDNS [6], and MAYA [31]. Hard-
ware emulation excels in application code realism (running
the real thing), while simulations tend to be more flexible
and have an advantage in terms of scalability. However, the
middle ground is increasingly being explored; for instance,
through increasing emulation support in simulators. For se-
curity exercises we like the flexiblity and scalability of sim-
ulation, and the safety of unleashing attacks in a simulated
environment rather than on a real network.

Several simulators offer similar capabilities, including
parallel execution, real-time/emulation support, and dis-
crete event/analytic models. However, we believe RINSE
is unique in the way it brings together human/machine-in-
the-loop real-time simulation support with multiresolution
network traffic models, attack models that leverage the ef-
ficiency of the multiresolution traffic representations, novel

Data Server Simulator
Database
Manager

iSSFNet Network Simulator

database

Network Viewer
Clients

Internet

RINSE backup instance

�� �
�
�
�

�� �
�
�
�

�	

�
�

�
 �
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�����
�����

����������

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�����
�����

����������

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
 � �
 � �

!�!�!"�"�"

#�#�#
#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$
$�$�$

%�%�%�%
%�%�%�%
&�&�&
&�&�&

'�'�'(�(�(

)�)
)�)
)�)

�
�
�

+�+�+
+�+�+
,�,�,
,�,�,

-�-�-.�.�.

/�/
/�/
/�/
/�/

0�0
0�0
0�0

1�1�1
1�1�1
2�2
2�2

3�34�4

5�5
5�5
5�5
5�5

6�6
6�6
6�6

7�7�7
7�7�7
8�8
8�8

9�9�9:�:

;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<

=�=�=
=�=�=
>�>�>
>�>�>

?�?@�@

A
A
A
A
A
A
A
A
A
A
A

B
B
B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
C

D
D
D
D
D
D
D
D
D
D
D

E
E
E
E
E
E
E
E
E
E
E

F
F
F
F
F
F
F
F
F
F
F

G
G
G
G
G
G
G
G
G
G
G

H
H
H
H
H
H
H
H
H
H
H

I
I
I
I
I
I
I
I
I
I
I

J
J
J
J
J
J
J
J
J
J
J

K
K
K
K
K
K
K
K
K
K
K

L
L
L
L
L
L
L
L
L
L
L

M
M
M
M
M
M
M
M

N
N
N
N
N
N
N
N

O
O
O
O
O
O
O
O

P
P
P
P
P
P
P
P

Q
Q
Q
Q
Q
Q
Q
Q
Q

R
R
R
R
R
R
R
R

S
S
S
S
S
S
S
S
S

T
T
T
T
T
T
T
T

U
U
U
U
U
U
U
U

V
V
V
V
V
V
V
V

W
W
W
W
W
W
W
W

Figure 1: RINSE architecture

models of host/router resources such as CPU and memory,
and novel routing simulation techniques. In this position pa-
per we provide an overview of RINSE to show how these
techniques are being brought to bear on the problem at hand.
We also detail some specific new contributions:i) a tech-
nique for absorbing outside network latency into the simu-
lation model andii) models for including CPU and memory
effects into network simulations.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the architecture of RINSE and outlines a
simple example scenario that introduces the salient features
of RINSE, described further in Sections3 to 5. Finally, Sec-
tion 6 summarizes and outlines future work.

2. RINSE Architecture

RINSE consists of five components: the iSSFNet net-
work simulator, the Simulator Database Manager, a
database, the Data Server, and client-side Network View-
ers, as shown in Figure1. The iSSFNet network simula-
tor, formerly called DaSSFNet, is the latest incarnation of
the C++ network simulator based on the Scalable Sim-
ulation Framework (SSF), an Application Programming
Interface (API) for parallel simulations of large-scale net-
works [3]. iSSFNet runs on top of the iSSF simulation
kernel, which handles synchronization and support func-
tions. iSSF uses a composite synchronous/asynchronous
conservative synchronization mechanism for paral-
lel and distributed execution support [18], and has re-
cently been augmented to include real-time interaction
and network emulation support. iSSFNet runs on paral-
lel machines to support real-time simulation of large-scale
networks.

Each simulation node connects independently to
the Simulator Database Manager, which delivers data
from the simulator to the database and delivers con-
trol input from the database to the simulator. On the
user/player side, the Data Server interfaces with client ap-
plications, such as the Java-based application “Network

Viewer”, which allows the user to monitor and control the
simulated network. In the future, we plan to evolve the ar-
chitecture towards using the emulation capabilities to
support direct SNMP interaction with the simulated net-
work devices, thus having regular networking utilities and
network management tools as clients. In the current de-
sign, the Data Server performs authentication for each
user, distributes definitions of the client’s view of the net-
work (using the Domain Modeling Language), and pro-
vides a simple way for the client applications to access
new data in the database through XML-based remote pro-
cedure calls. The Network Viewer clients, a screen shot
shown in Figure2, provide the users with their local view
of the network (usually only their organization’s net-
work) and periodically poll the Data Server for data. The
Data Server responds with new data for each client, ex-
tracted from the database. The game managers, function-
ing as superusers of an entire exercise, also use Network
Viewer clients, but can have a more global view of the net-
work.

The Network Viewer clients have a simple command
prompt where the user can issue commands to influence the
model. User commands are sent in the opposite direction of
the output data path and injected into the simulator. We cur-
rently divide the commands into five categories:
Attack– the game managers can launch attacks against net-

works or specific servers. RINSE focuses on Denial-
of-Service effects on networks and devices, so attacks
include DDoS and worms.

Defense–attacks can be blocked or mitigated, for instance
by installing packet filters.

Diagnostic Networking Tools– functionality simi-
lar to some commonly used networking utilities,
such as ping, are supported for the player to diag-
nose the network.

Device Control– individual devices, such as hosts and
routers, can be shutdown or rebooted.

Simulator Data– commands can be issued to the simula-
tor to control the output, turn on or off trace flow from
a particular host, etc.

Depending on the type of a command, it may be address-
ing the whole simulator, a particular host or router, a par-
ticular interface, or a particular protocol or application on
a host or router. A command handling infrastructure in the
simulator passes the commands from the clients to the ap-
propriate components of the simulation model.

2.1. Example Scenario

Consider a simple scenario where a player is responsible
for a subnetwork, partially shown in Figure2, containing
among other things a server. Multiple clients are requesting
information from the server through some form of trans-
actions. By transaction we simply mean a request-response

Figure 2: Network Viewer client screen shot

exchange between the client and the server. Section4 out-
lines RINSE’s models for efficient representation of traffic
flows and route computation.

A game manager attempts to disrupt the operations of
the server by launching a DDoS attack against open ser-
vices on the server, and the player responsible for the net-
work will need to diagnose what is going on and try to take
remedial actions. The game manager launches the attack by
issuing an attack command at the Network Viewer client:

ddos attack attacker server 100 2000

Both attacker andserver are symbolic names for the
attacker’s host and the targeted host, respectively. Upon re-
ceiving the command (via the command handling infras-
tructure), the attacker’s host uses a simulated intermedi-
ate communication channel (e.g., Internet Relay Chat) to
send attack signals to zombie hosts—hosts under the at-
tacker’s control. These zombie hosts then initiate the denial-
of-service attack against the targeted victim. The attack is to
last for 100 seconds and each zombie emits traffic at a rate
of 2000 kbits/s. RINSE attack models leverage efficiencies
in its high volume traffic representations (Section4).

We will assume here that the DDoS traffic simply loads
the open service daemons and thus induces a large CPU load
on the server. This load disrupts the processing of legiti-
mate transactions. As shown in the screen shot in Figure2,
the player managing the server can monitor the CPU uti-
lization on the server and observe an abnormally high load.
Models of host and router resources like CPU and memory
are described in more detail in Section5. After determining
that the load likely stems from abnormal traffic, the player

attempts to block traffic on a certain port that has been in-
advertently left open by issuing the command:

filter server add 0 deny all all * all * 23

to install a filter on the server to deny packets coming in on
all interfaces, usingall protocols, from all source IP ad-
dresses (“* ”), and all source ports, to all destination IP
addresses (“* ”) and destination port 23. Successful filter-
ing blocks packets from reaching the open service daemons
and thus alleviates the load on the server at the expense of
some processing cost for filtering.

We now proceed to describe aspects of the system men-
tioned here in more detail, starting with the real-time simu-
lation support.

3. Real-time Simulation Support

In addition to supporting the RINSE Network Viewer
client, we are currently developing support for the Sim-
ple Network Management Protocol (SNMP) to allow us to
monitor and control the simulated network devices through
industry-standard network management tools. For that rea-
son, our real-time simulation support must be simple, flex-
ible, and be able to accommodate real-time interactions at
varying degrees of intensity, including both human-in-the-
loop and machine-in-the-loop simulations. In this section,
we describe the real-time support both in the iSSF parallel
simulation kernel and in the network simulator supported
by iSSF.

3.1. Kernel Support

Over the years, we have seen many network emulators,
ranging from single-link traffic modulators to full-scale net-
work emulation tools, e.g. [25, 29]. Most network emulators
are time-driven. For example, ModelNet [29] stores packets
in “pipes” sorted by the earliest deadline. A scheduler ex-
ecutes periodically (once every 100µseconds) to emulate
packet moving through the pipes. There are two main draw-
backs associated with the time-driven approach:i) the ac-
curacy of the emulation depends on the time granularity of
the scheduler, which largely depends on the target machine
or the target operating system, andii) there has not been a
good model used by network emulators to accurately char-
acterize the background traffic and its impact on the fore-
ground transactions (i.e., traffic connecting real-time appli-
cations). Simulation-based emulation (also referred to as
real-time network simulation), on the other hand, provides
a common framework for real application traffic to inter-
act with simulated traffic, and therefore allows us to study
both network and application behaviors with more realism.
Examples of existing real-time network simulators include
NSE [5], IP-TNE [27], MaSSF [16], and Maya [31]. IP-
TNE is the first simulator we know that adopts parallel sim-

ulation techniques for emulating large-scale networks. The
real-time support in iSSF inherits many features of these
previous simulation-based emulators. Our approach, how-
ever, is unique in several ways, which we elaborate next.

Extending SSF API.The real-time support is designed as
an extension to the SSF API, thus making an easy transi-
tion for other SSF models that require real-time support. In
SSF, aninChannel (or outChannel) object is defined
as a communication port in an entity to receive (send) mes-
sages from (to) other entities. We extended the concept of
the in-channel using it as the conduit for the simulator to
receive events from outside the simulator (e.g., accepting
user commands arrived at a TCP socket). We extended the
API so that a newly created in-channel object can be associ-
ated with a reader thread. The reader thread converts (exter-
nal) physical events into (internal) virtual events and injects
them into the simulator using theputVirtualEvent
method. A virtual event is created to represent the corre-
sponding physical event and is assigned with a simulation
timestamp calculated as a function ofi) the wall-clock time
at which the event is inserted into the simulator’s event-
list, and ii) the current emulation throttling speed (which
we will elaborate momentarily). The SSF entities receive
events from the in-channel objects as before, regardless of
whether they represent special devices that accept exter-
nal events. From a modeling perspective, there is no dis-
tinction between processing a simulation event and a real-
time event. Similarly, we also extended the concept of the
out-channel using it as a device to export events (for ex-
ample, reporting the network state to a client application
over a TCP connection). In this case, a writer thread can
be associated with the specialoutChannel object. The
writer thread invokes thegetRealEvent method to re-
trieve events designated for the external device and con-
verts the virtual events into physical events. Each of these
events is assigned with a real-time deadline indicating the
wall-clock time at which the event is supposed to happen.
The real-time deadline is calculated from the virtual time
and again the emulation throttling speed. The writer thread
is responsible for delivering the event upon the deadline.

Throttling Emulation Speed.The system can dynamically
throttle the emulation speed (either by accelerating or decel-
erating the simulation execution with respect to real time).
This feature is important for supporting fault tolerance. For
example, if a simulator fails over a hardware problem, after
fixing the problem, the simulator should be able to restart
from a previously checkpointed state and quickly catch up
with rest of the system. We can accelerate the emulation
speed and use the same user input logged at the database
server to restore the state. In order to regulate the time
advancement, we modified thestartAll method in the
Entity class (which is used to start the simulation in SSF),

adding an optional argument to allow the user to specify the
emulation speed as the ratio between virtual time and wall-
clock time—for example, a ratio of one means simulation
in real-time, “infinity” means simulation as fast as possible,
and zero means halting the simulation. AnEntity class
methodthrottle is also added to make it possible to dy-
namically change the ratio during the simulation.

Prioritizing Emulation Events: We use a priority-based
scheduling algorithm in the parallel simulation kernel to
better service events with real-time constraints. In SSF, the
user can cluster entities together as timelines, i.e., logical
processes, that maintain their own event-lists. Events on the
timelines are scheduled according to a conservative syn-
chronization protocol [18]. In a “pure” simulation scenario,
where the simulation is set to run as fast as possible, a time-
line can be scheduled to run as long as it has events ready
to be processed safely without causing causality problems.
For that reason, during the event processing session, the ker-
nel executes all safe events of a timelineuninterruptedto
reduce the context switching cost. When we enable emu-
lation, however, the timelines that contain real-time events
must be scheduled promptly.

To promptly process the events with real-time deadlines
in the system, we adopted a greedy algorithm in iSSF as-
signing a high priority to emulation timelines. These time-
lines contain real-time objects—special in-channels and
out-channels that are used for connecting to the physical
world. Whenever a real-time event is posted and ready to be
scheduled for execution on these emulation timelines, the
system interrupts the normal event processing session of a
non-emulation timeline and makes a quick context switch to
load and process the real-time events in the emulation time-
line. This priority-based scheduling policy allows the events
that carry real-time deadlines to be processed ahead of regu-
lar simulation events. Note that, however, since normal sim-
ulation events may be on a critical path that affects a real-
time event, this method is not an optimal solution. We are
currently investigating other more efficient scheduling algo-
rithms that can promptly process emulation events as well
as events on the critical path, so that the real-time require-
ment can be satisfied in a resource-constrained situation.

3.2. Latency Absorption

We realize that the real-time demand not only puts a tight
constraint on how we process events to reduce the chance
of missed deadlines, but also on the connectivity between
the simulator and the real applications. For example, con-
sider a scenario in which a path is established between a
client machine running theping application and the ma-
chine running the network simulator, as shown in Figure3.
The client machine, which assumes the role of a host in
the simulated network (with a virtual IP address 10.5.0.12),

% ping 10.0.1.19
PING 10.0.1.19: 56 data bytes

64 bytes from 10.5.0.12: icmp_seq=0

ttl=64 time=0.54 ms

64 bytes from 10.5.0.12: icmp_seq=1

ttl=64 time=0.28 ms
…

10.5.0.12

10.0.1.19

physical connections

virtual connections

Simulated

Network

Reader

Thread

Writer

Thread

Figure 3: Emulation of a Ping Application

pings another host at 10.0.1.19. The ping application at the
client machine generates a sequence of ICMP ECHO pack-
ets targeting 10.0.1.19. These packets are immediately cap-
tured by a kernel packet filtering facility [17] and then sent
to the machine running the simulator. A reader thread re-
ceives these packets, and converts them to the correspond-
ing simulation events. The simulator carries out the simu-
lation by first putting the ICMP ECHO packets in the out-
put queue of the simulated host 10.5.0.12. The packets are
then forwarded over the simulated network to the desig-
nated host 10.0.1.19, which responds with ECHO REPLY
packets. Once the packets return to the host 10.5.0.12, the
simulator exports the events to a writer thread, which sends
them to the client machine running the ping application. The
client ping application finally receives the ECHO REPLY
packets and prints out the result. Note that the segment of
the path between the client application and the simulated
host does not exist in the model. The problem is that the la-
tencies of the physical connection can contribute a signifi-
cant portion of the total round-trip delay. Simply on the for-
warding path (from the client to the simulator), it may take
hundreds of microseconds even on a high-speed local area
network, before the emulation packet is eventually inserted
into the simulator’s event-list.1 It can tremendously affect
applications that are sensitive to such latencies.

Our solution to this problem is to hide the latencies due
to the physical connectioninside the simulated network.
Since delays are imposed upon network packets transmit-
ted from one router to another in simulation, we can mod-
ify the link layer model to absorb the latencies by send-

1 The delay includes the time for the sender’s operating system to cap-
ture and send the packet, the transmission time of the packet, the time
for the reader thread to receive the packet, and the time for the simu-
lator to finally accept the event and insert it into the appropriate event-
list.

ing the packet ahead of its due time. The simulator mod-
els the link-layer delay of a packet in two parts: the queu-
ing time—the time to send all packets that are ahead of the
packet in question, and the transmission time—the time for
the packet to occupy the link before it can be successfully
delivered, which we model as the sum of the link latency
and the transmission delay—the latter is calculated by di-
viding the packet size by the link’s transmission rate. As-
suming that packets are sent in first-in-first-out (FIFO) or-
der, the time required to transmit a packet is known as soon
as the packet enters the queue at the link layer. Note that, if
the FIFO ordering is not observed (e.g., packets are priori-
tized according to their types), one cannot predict the packet
queuing time precisely. Furthermore, if we need to provide a
more detailed model on lower protocol layers, the link state
layer may play a significant role in determining the packet
transmission time as well. In either case, we can still use a
lower bound of the packet delays in our scheme. In the dis-
cussions to follow, we assume the delays are precise for bet-
ter exposition.

We use a list to store the packets in the queue together
with their precalculated transmission times. LetTnow be the
current simulation time andP0 be the last packet transmit-
ted over the link.T0 is the simulation time thatP0 starts
transmission (T0 ≤ Tnow). Let Pi be the ith packet in
the queue, where0 < i ≤ N and N is the total num-
ber of packets currently in the queue. The time to transmit
packetPi is thereforeTi = T0 +

∑i−1
j=0(λ + βj), where

λ is the link latency andβj is the transmission delay of
packetPj . Suppose that an ICMP ECHO packet is cre-
ated externally at wall-clock timetR, and the correspond-
ing simulation packetPd is injected into the simulator at
time t′R. As a result, the packet carries a virtual time deficit
of τd = (t′R − tR)/R, whereR is the proportionality con-
stant that indicates the emulation speed (i.e., the ratio of vir-
tual time to real time). Rather than appending the packet to
the end of the queue, we insert the packet right before packet
Pk, wherek = max{i|i ≥ 0 andτd <

∑N
j=i(λ+βj)}.2 Af-

ter inserting the packet in the queue, we reduce deficit of the
packet by the total transmission times of all packets behind
the packet in the queue:

∑N
j=k(λ + βj). Further improve-

ment can be made to transmit the emulation packets even
earlier. When a packet with a deficit becomes the head of
the queue, we can simulate the packet transmission in zero
simulation time. That is, we can further reduce the deficit
by the packet’s transmission time. Note that in iSSF the de-
lay of the link that connects hosts belonging to two separate
timelines is used to calculate the lookahead for the conser-
vative parallel synchronization protocol. It is required that
the link latencyλ for cross-timeline links must be larger

2 We do this by scanning the list from the packet at the tail of the list.
k=0 means that the packet is inserted at the front of the list.

than zero. In this case, we can only reduce the deficit by as
much as the expected packet transmission delay.

It is reasonable to insert an event with a time deficit
ahead of others in the queue. After all, were the physical
connection latencies not present, the event would have en-
tered the queue much earlier. However, in cases where the
deficit is larger than the sum of transmission time of all
packets in the queue (the packet is therefore inserted at the
head of the queue), we can only allow the packet to con-
tinue carrying the remainder of the deficit to the next hop,
and therefore preempt events at the next hop. The process
continues until the deficit is reduced to zero, or the packet
reaches its destination. Since we do not “unsend” packets
that have been sent before the emulation packet with the
deficit arrives, this scheme is simply an approximation once
the deficit is carried to the next hop.

Another issue concerns accommodating the physi-
cal connection latencies in the reverse path (from the
simulator to the client application). A simple solu-
tion is to assume such latencies in the reverse path to
be the same as in the forwarding path, and use a deficit
of the same amount for all packets traveling in that di-
rection. The problem with this approach is that the sim-
ulated network always tries to make up for the deficit
within the first few hops, while in fact such a deficit is ex-
pected at the last segment of the path from the simulator
to the application client. This means the interactions be-
tween the packets with deficits and other packets in sim-
ulation do not represent reality. We expect that, since in
large-network simulations there are much fewer emula-
tion packets than simulation packets, the effect of such a
distortion may not be significant at all. We plan to quan-
tify such effect in our future work.

4. Traffic, Attacks, and Routing

iSSFNet includes several novel techniques for modeling
traffic, network attacks, and routing of traffic flows. A key
technique employed in iSSFNet to make real-time simula-
tion of large networks feasible is multi-resolution represen-
tations of traffic whereby the level of detail with which a
traffic flow is simulated depends on how interested we are
in the detailed dynamics of the flow. Traffic that is “in fo-
cus” (foreground traffic) is simulated with high fidelity at
packet-level detail. Traffic that represents other things going
on in the network (i.e.,background traffic) is abstracted us-
ing fluid modeling, either using fine grained per-flow mod-
els, or coarse time-scale periodic fixed point solutions.

Fluid modeling [11, 15] is being explored also in other
network simulators, such as MAYA [31], IP-TN [12], and
HDCF-NS/pdns [24]. The models used in iSSFNet are
based on our previous work to develop discrete-event fluid
modeling of TCP and hybrid traffic interaction models such

that the packet and fluid representations can coexist in the
same simulation [21]. Recent work has addressed coarser
models using fixed point solution techniques [22] of flow
competition through a network, permitting several orders of
magnitude speedups [19] and thus making it possible to rep-
resent larger networks and more flows in real time.

Attack models in RINSE focus on assets at a network
resource level, i.e., things like network bandwidth, control
over hosts, or computational or memory resources in hosts.
Current attack models include DoS attacks, worms, and
similar large-scale attacks typically involving large numbers
of hosts and high intensity traffic flows. We are thus gener-
ally only interested in the coarse behavior of the attack traf-
fic (a large volume of traffic) rather than the detailed traf-
fic dynamics. Consequently, we leverage the coarser multi-
resolution traffic models for efficient attack models, includ-
ing zombie hosts emitting fluid DoS flows and fixed-point
solutions of worm scan traffic intensities based on our pre-
vious work in multi-resolution worm modeling [14].

Memory and computational demands for routing of traf-
fic have been identified as significant obstacles for large-
scale network simulation and emulation. Some studies [23,
9, 2] start from the premise of shortest path routes and try
to reduce computational and representational complexity
through spanning tree approximations [9, 2] or lazy evalu-
ation [23]. Others have achieved memory reductions in de-
tailed protocol models, such as BGP (policy based routing)
through implementation improvements [8, 4].

In iSSFNet we have developed a method for on-demand
(lazy) computation of policy based routes, as computed by
BGP [13]. For efficiency reasons and to ensure that traffic
(attack traffic in particular) can address and reach a desti-
nation network even if the destination is missing, we need
hierarchical addressing. Hence, our routing model is cur-
rently being extended to handle route aggregation. We are
thus able to preload partial (precomputed) forwarding ta-
bles based on a priori known traffic patterns in the model,
such as scripted background traffic, and compute routes for
other flows as needed.

5. Modeling Device Resources

Earlier exercises of the type RINSE is targeting indicated
the need to model not only limited network resources, like
bandwidth, but also some aspects of constraints on compu-
tational resources in hosts and routers. Partly since they may
be targeted for Denial-of-Service, but also to preclude un-
realistic defensive strategies. For instance, zero cost packet
filtering allows unrealistically large numbers of filters. Con-
sequently, we need “light-weight” models of computational
resources (CPU) and memory in RINSE, a problem that has
not received much attention in network simulation to date
since simple models have generally sufficed. For instance, a

uniformly distributed compute delay has been used in stud-
ies of simulations of BGP routing [7], or a simple fixed
cryptographic cost for S-BGP processing [20]. The sensor
networking community, being very conscious of the con-
straints imposed by tiny sensors, are particularly interested
in modeling the power consumption of different compo-
nents, including the CPU [26].

5.1. CPU Model in RINSE

In RINSE a fair amount of detail is necessary and we
identified the following requirements on our CPU model:

• Interferencebetween different CPU intensive tasks.

• Traffic delaycould result from high CPU load–in par-
ticular during abnormal (attack) conditions.

• Possibility ofpacket lossdue to sustained high load.

• Observable CPU load:the user should be able to mon-
itor CPU load to diagnose the system.

• Light weight:we must strive for the simplest possible
models that can at least approximately represent the
desired effects.

Thus, we require more behavior detail than many other ap-
plications do to be able to capture, at least coarsely, inter-
actions between different tasks and traffic flows in terms of
processing. This results in significant implementation hur-
dles, as will be described, and the situation is also compli-
cated by the fact that the multi-resolution representation of
traffic necessitates a multi-resolution representation of com-
putational workload (i.e. hybrid discrete and fluid represen-
tations).

Interference: to observe interference between different
tasks, we need to model how processing cycles are allo-
cated. The generic UNIX process scheduling mechanism3

[28] is based on priority scheduling, where process priori-
ties are continuously recomputed to try to achieve good re-
sponsiveness and latency hiding for I/O bound tasks.

We do not want to get into the details of the schedul-
ing mechanism, but be able to observe competition for re-
sources. Within the CPU, a set oftasksare defined, where
a task can be thought of as a process or thread. For in-
stance, these could be application layer processes like web
clients/servers, a database server, or lower layer functional-
ity like a firewall process doing packet filtering on incom-
ing packets. Figure4 illustrates how each task services the
work it has to do in FCFS order, but cycles are allocated
among tasks using processor sharing. In this first model we
simplify the problem by assuming that the tasks we con-
sider have roughly the same priority (same range), so that

3 It varies somewhat between different flavors. Linux has a slightly dif-
ferent mechanism, but for the purposes of this discussion it’s essen-
tially the same.

task 1

task 2

task N

1
f t 1

pt 

2
f t 2

pt 

N
f t N

p t 

1t 

FCFS processor
sharing



1t 

Figure 4: Processing work model where work is handled
FCFS by tasks that are allocated “cycles” on the CPU

they are treated equally. The requests (incoming traffic) to
each task may be a mixture of packets and fluid traffic flows.
As in the hybrid packet/fluid traffic model in [21], we form
a hybrid queue by fluidizing the packet load through esti-
mating the packet rate. However, the service model inter-
leaving the tasks actually make things even more compli-
cated here than most hybrid traffic models since service is
not FIFO. Assume there areN tasks. Letλf

i (t) be the in-
coming fluid workload rate for taski (in cycles per second)
at timet, and andµ is CPU service rate (i.e. its speed). A
packet has an associated workload,wt in cycles. By esti-
mating the the packet arrival rate over a time window[t′, t],
we get the estimated packet workload rateλp

i (t). Let the to-
tal arriving workload for taski beλi(t) = λf

i (t) + λp
i (t).

We need to allocate a service rate to each taskµi(t), deter-
mine backlogβi(t) and possibly lost workξi(t). A discrete
workload arrival (packet workload) att is always added to
backlog on arrivalβi(t)← βi(t) + wt. Note, however, that
if no discrete arrivals preceded it in[t′, t], thenλp

i (t) = 0.
We consider two cases:

Non-overload, the total incoming workload rate over all
tasks is less than or equal to the workload service
rate the CPU can handle, i.e.

∑
i λf

i (t) + λp
i (t) ≤ µ.

In this case each task is first assigned the fluid ser-
vice rate it requiresµi(t) = λf

i (t) + λp
i (t). Tasks that

have any backlog (βi(t) > 0), and this applies to any
tasks processing packets, are marked asgreedy. Let g
be the number of greedy tasks. Any left-over cycles
γ(t) = µ −

∑
i µi(t) are allocated equally to greedy

tasksµi(t) ← µi(t) + γ(t)/g. This ensures that the
backlog gets drained as quickly as possible and thus
packets are processed as quickly as possible. Conse-
quently, fluid workload results in a processor utiliza-
tion in proportion to the incoming rate, while discrete
workload results in bursts of full utilization.

Overload, the sum of the incoming fluid workload rates
and the averaged packet workload rates is greater than
the service rate of the CPU. That is, there is a sustained

overload condition. In this case the tasks are denied
cycles in proportion to their fraction of the total work-
load, and what cannot be handled accumulates as back-
log.

µi(t) =
λi(t) · µ∑

i λi(t)
(1)

An arriving discrete workload (packet) that does not
yet have an average rate estimate poses a problem in
this case. It is givenµi(t) = 1 (full utilization) with-
out affecting other flows. This is unrealistic in that the
total CPU service rate is now briefly more thanµ, but
is a reasonable approximation for occasional packets.
If the packet is the first in a series with high average
workload rate, then the service rates will be corrected
the moment the first arrival rate estimate is calculated.

When a task is defined, a buffer space sizebi can be as-
signed to it to limit the backlog and introduce the possi-
bility of loss of work if the task cannot keep up. Packets
occupy buffer space according to their size until serviced.
Fluid flows are assumed to have a simple linear relation-
ship between the workload rate (cycles/second) and mem-
ory used for backlog rate (bytes/second). Modeling loss in
hybrid queues is a delicate matter, as pointed out in [21]. If
a discrete workload (packet) arrives to a back-logged task
queue such that there is not enough space to fit it in the
buffer we consider the state of the queue. If it is draining,
the average arrival rate is less than the service rate, and we
assume that it will fit (replacing fluid buffer space with the
packet). If the queue is filling, we give the packet a proba-
bility of fitting into the queue equal to its proportion of the
total task loadp = λp

i (t)/(λf
i (t) + λp

i (t)).
In an overload condition tasks become coupled through

competition for CPU and through the traffic flow, with fluid
loads possibly leading to a cyclic dependency of traffic and
CPU work; an unexpected complication. Figure5 illustrates
how we consider the cost of filtering and traffic forward-
ing in a firewall router, and if the CPU gets overloaded
it needs to report back to the protocol layers so that they
can reduce the traffic rate emitted. However, since the traf-
fic flow passes first through filtering (A) and then forward-
ing (B) there is a feedback loop in terms of rate adjust-
ments. WhenB changes its load to the CPU, it must up-
date the serviced load forA. A must then update the traffic
rate emitted toB, which must then perform another load up-
date to the CPU. Forn tandem tasks, where work is propor-
tional to flow rate, the principle of proportional loss (equa-
tion 1) limits the feedback. Consider thei:th task. Letfi be
the inflow,λi = ki · fi be the (offered) workload, andcn

i

be the cycles allocated for taski. Initially, flow rate f1 is
sent through all tasks, so equation1 implies we allocate cy-
cles ascn

i = ki/
∑n

j=1 kj . Tandem dependencies means

filtering

CPU

forwarding
fluid traffic

f 1
f 2

f 3

A B
1

load

1
serviced

Figure 5: CPU control feedback on tasks and fluid flows

thatfi = (cn
i−1/λi−1) · fi−1, and thus

λi = ki

cn
i−1

λi−1
fi−1 =

ki · ki−1fi−1 · fi−1∑n
j=1 kjfi−1ki−1fi−1

=
ki∑n

j=1 kj

That is, the required cyclesλi to handle the adjusted in-
flow fi equals the fraction of cycles assignedcn

i , so the allo-
cation stabilizes immediately. But completely avoiding this
feedback loop does not appear possible, so we rate limit the
feedback from the CPU to the protocol layers. Through this
rate limiting, we mimic the control delay imposed by the
scheduling mechanism and bound the computational costs
in the model.

Traffic delay: one difficult issue was how to implement
delays within the protocol stack without incurring signifi-
cant overheads and code complexity. iSSFNet uses a proto-
col model inspired by the x-kernel design [10], where proto-
col sessions have a well defined common interface through
which they can be plugged together. These are the push
and pop methods. For maximum efficiency, the program-
ming patterns used in the protocol stack are based on event-
orientation through timer objects and continuations. Rather
than switch to process-orientation to support arbitrary sus-
pension points for packet processing delays, we opted to
limit the possible suspension points to the push/pop entry
interfaces (the socket API for the application layer). Thus,
multiple delays on a packet within one protocol session
will be merged into one delay that is not incurred until the
point where the packet enters the next protocol session. The
push/pop API’s are good candidate suspension points be-
cause the state of processing of a packet (or a fluid flow)
is passed in the packet itself along with a small number
of additional parameters. Hence, we can safely assume that
there are no additional state variables earlier in the execu-
tion stack that need saving. So, upon return we continue
processing from the push or pop call without reconstruct-
ing the process stack. Other data structures in the protocol
sessions, such as queues of packets that have been delayed
pending some condition, evolve over time and thus do not
require saving.

The accumulated delay for a packet within a protocol
session is stored in the packet and thus detected as the
packet reaches the next push/pop suspension point. Suspen-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

P
er

ce
nt

 U
til

iz
at

io
n

Time [s]

measured
sim., discrete

sim., fluid

Figure 6: Example:scp transfer

sion points can be enabled or disabled through the DML
configuration; the idea being to make it easy to aggregate
delays, and thus aggregate events, by having fewer enabled
suspension points. Displacing the suspension point from the
point in the code where the delay should take place alters the
causal ordering of state modifications in the model, i.e. the
interleaving of updates in simulation time will be slightly
altered. We believe this will not be a significant issue for
the protocols under consideration here, but more experience
with the model will be needed to bear this out.

5.2. Example

We illustrate the CPU model through a very simple ex-
ample. In an experiment a 41.6 MB file was downloaded
from a Linux laptop (acting as the server) usingscp (se-
cure copy). The CPU load on the data source (server) was
monitored usingvmstat . Figure6 shows the CPU utiliza-
tion during the transfer as “measured”. This scenario was
modeled in iSSFNet using its packet level TCP model. A
client host is connected directly to a server host through a
100 Mb/s link. When modeling the CPU load, we have two
choices: use a fluid representation of the load on the CPU,
or use discrete chunks of work. The fluid representation is
simple to use and has very low simulation cost. The draw-
back is that it is coarse and will not impose any delay on
the the packets. Discrete work is more expensive to simu-
late, but is more fine-grained and delays packets.

Using fluid work, we simply call asetFluid method
on the CPU, as the transfer starts, to set the instruction rate
during the transfer (we simply match the observed utiliza-
tion). When the transfer is completed the instruction rate
is set back to zero. The result, shown as “fluid load”, indi-
cates a shorter transfer time than what was measured. Al-
ternatively, we can use discrete workloads. Examining the
OpenSSH scp implementation indicates that it transfers data
through a 2 KB buffer, so we write data to the socket in 2 KB
blocks and impose a compute delay on each block for data

transfer and encryption. The computation cost is registered
through a call tocpu.use(...) with the number of in-
structions used and a pointer to the socket being used. The
socketsend() code hides a call tocpu.delay(...)
causing the socket processing to be suspended and delayed.
We also use a timer to add a small idle delay between each
block to model latencies. After tuning these delays, the re-
sult shown as “discrete load”, can be made to match reality
fairly well.

There is a significant difference in simulation cost be-
tween these two approaches. Using fluid CPU load, no ex-
tra events are added by the CPU model, but with the dis-
crete workload model, each block requires a resource de-
parture event and results in an event for drained backlog.
Thus, the total event count increases by a factor of about
2.4 and the execution time by a factor of 4. It is up to the
modeler to determine when the additional cost is justified.

Aside from approximations arising from implementation
decisions, the current CPU resource model represents many
simplifications. The principle of proportional loss is fre-
quently used for fluid traffic and alleviates the allocation
feedback issue mentioned previously. But we see the need
for more emphasis on distinction of task priorities to better
mimic prioritization of processes and threads. For instance,
kernel level processes should be largely insulated from de-
mands at the user level. We are looking into new allocation
policies that can prioritize demands.

6. Summary and Future Work

RINSE incorporates recent work oni) real-time inter-
action/emulation support,ii) multi-resolution traffic model-
ing, iii) efficient attack models,iv) efficient routing simula-
tion, andv) CPU/memory resource models, to target large-
scale preparedness and training exercises. Described here
were efficient CPU/memory models necessary for the sce-
nario exercises, and a latency absorption technique that will
help when extending the range of client tools usable by the
players.

Aside from model refinements, our ongoing and future
work includes more fundamental issues such as supporting
fault tolerance and efficient real-time scheduling of com-
pute intensive tasks like background traffic calculations and
major routing changes. For example, we would like our sim-
ulation framework to permit certain background tasks, such
as background traffic calculations, to be adaptively sched-
uled based on higher priority load.

AcknowledgementsThis research was supported in part
by DARPA Contract N66001-96-C-8530, NSF Grant CCR-
0209144, and DHS Office for Domestic Preparedness award
2000-DT-CX-K001. Thus, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce
this contribution. Points of view expressed are those of the

authors and do not necessarily represent the official posi-
tion of the U.S. Department of Homeland Security.

References

[1] T. Bridis. Gov’t simulates terrorist cyberattack. Asso-
ciated Press,http://www.zone-h.org/en/news/-
read/id=3728 , November 2003.

[2] J. Chen, D. Gupta, K. Vishwanath, A. Snoeren, and A. Vah-
dat. Routing in an Internet-scale network emulator. In
Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), October
2004.

[3] J. Cowie, D. Nicol, and A. Ogielski. Modeling the global In-
ternet. Computing in Science and Engineering, 1(1):42–50,
January 1999.

[4] X. Dimitropoulos and G. Riley. Large-scale simulation mod-
els of BGP. InSymposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MAS-
COTS), October 2004.

[5] K. Fall. Network emulation in the Vint/NS simulator. In
4th IEEE Symposium on Computers and Communications
(ISCC’99), pages 244–250, July 1999.

[6] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and
G. Riley. Large-scale network simulation – how big? how
fast? InSymposium on Modeling, Analysis and Simulation
of Computer Telecommunication Systems (MASCOTS), Oc-
tober 2003.

[7] T. Griffin and B. Premore. An experimental analysis of bgp
convergence time. In9th International Conference on Net-
work Protocols (ICNP), November 2001.

[8] F. Hao and P. Koppol. An Internet scale simulation setup for
BGP. ACM SIGCOMM Computer Communication Review,
33(3):43–57, July 2003.

[9] P. Huang and J. Heidemann. Minimizing routing state for
light-weight network simulation. InSymposium on Model-
ing, Analysis and Simulation on Computer and Telecommu-
nication Systems (MASCOTS), August 2001.

[10] N. C. Hutchinson and L. L. Peterson. The x-kernel: An archi-
tecture for implementing network protocols.IEEE Transac-
tions on Software Engineering, 17(1):64–76, January 1991.

[11] G. Kesidis, A. Singh, D. Cheung, and W. W. Kwok. Feasibil-
ity of fluid-driven simulation for atm network. InProceed-
ings of IEEE Globecom, November 1996.

[12] C. Kiddle, R. Simmonds, C. Williamson, and B. Unger. Hy-
brid packet/fluid flow network simulation. In17th Workshop
on Parallel and Distributed Simulation, June 2003.

[13] M. Liljenstam and D. Nicol. On-demand computation of pol-
icy based routes for large-scale network simulation. In2004
Winter Simulation Conference (WSC), December 2004.

[14] M. Liljenstam, D. Nicol, V. Berk, and R. Gray. Simulating
realistic network worm traffic for worm warning system de-
sign and testing. In2003 ACM Workshop on Rapid Malcode
(WORM), October 2003.

[15] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley.
A study of networks simulation efficiency: Fluid simulation
vs. packet-level simulation. InIEEE Infocom, Anchorage,
Alaska, April 2001.

[16] X. Liu, H. Xia, and A. Chien. Network emulation tools
for modeling grid behavior. In3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CC-
Grid’03), May 2003.

[17] S. McCanne and Van Jacobson. The BSD packet filter: a new
architecture for user-level packet capture. InWinter USENIX
Conference, pages 259–269, January 1993.

[18] D. Nicol and J. Liu. Composite synchronization in paral-
lel discrete-event simulation.IEEE Transactions on Parallel
and Distributed Systems, 13(5):433–446, May 2002.

[19] D. Nicol, J. Liu, M. Liljenstam, and G. Yan. Simulation
of Large-Scale Networks Using SSF. InWinter Simulation
Conference (WSC), December 2003.

[20] D. Nicol, S. Smith, and M. Zhao. Evaluation of efficient se-
curity for BGP route announcements using parallel simula-
tion. Simulation Pratice and Theory Journal, special issue
on Modeling and Simulation of Distributed Systems and Net-
works, June 2004.

[21] D. Nicol and G. Yan. Discrete event fluid modeling of back-
ground TCP traffic. ACM Transactions on Modeling and
Computer Simulation, 14:1–39, July 2004.

[22] D. Nicol and G. Yan. Simulation of network traffic at coarse
time-scales. InWorkshop on Principles of Advanced and
Distributed Simulation (PADS), 2005.

[23] G. Riley, M. Ammar, and R. Fujimoto. Stateless routing in
network simulations. InSymposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), May 2000.

[24] G. Riley, T. Jaafar, and R. Fujimoto. Integrated fluid and
packet network simulations. InSymposium on Modeling,
Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), October 2002.

[25] L. Rizzo. Dummynet: a simple approach to the evaulation of
network protocols.ACM SIGCOMM Computer Communi-
cation Review, 27(1):31–41, January 1997.

[26] A. Savvides, S. Park, and M. B. Srivastava. On modeling
networks of wireless micro sensors. InSIGMETRICS, June
2001.

[27] R. Simmonds and B. Unger. Towards scalable network em-
ulation. Computer Communications, 26(3):264–277, Febru-
ary 2003.

[28] A. Tanenbaum.Modern Operating Systems, 2nd ed.Prentice
Hall, Upper Saddle River, NJ, 2001.

[29] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becker. Scalability and accuracy in a
large scale network emulator. InProceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(OSDI’02), December 2002.

[30] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. InFifth Symposium on Operating Systems Design
and Implementation, pages 255–270, December 2002.

[31] J. Zhou, Z. Ji, M. Takai, and R. Bagrodia. MAYA: integrating
hybrid network modeling to the physical world.ACM Trans-
actions on Modeling and Computer Simulation (TOMACS),
14(2):149–169, April 2004.

	Introduction
	RINSE Architecture
	Example Scenario

	Real-time Simulation Support
	Kernel Support
	Latency Absorption

	Traffic, Attacks, and Routing
	Modeling Device Resources
	CPU Model in RINSE
	Example

	Summary and Future Work

